Moving Beyond Competitions: Extending D-Cube to Seamlessly Benchmark Low-Power Wireless Systems

Markus Schuß, Carlo Alberto Boano, and Kay Römer
Institute of Technical Informatics
Graz University of Technology, Austria

04/17/2018
Problem Statement

- No standardized methodology to compare the performance of low-power wireless systems

- EWSN Dependability Competition Series
 - Goal: find which low-power wireless protocol perform(s) best in harsh RF environments
 - Created a dedicated competition infrastructure (D-Cube)

- 2016: 1st edition with dense mesh network and point-to-point communication
 - Good accuracy, but no generality of results
 - Later editions became more general by focusing on multiple communication patterns

- From competition infrastructure to benchmarking infrastructure: what’s missing?
EWSN Dependability Competition

- Sensing node in proximity of a light source (blinking LED)
- Detecting status changes (on/off)
- Forwarding them to a sink node

GPIO
EWSN Dependability Competition

- Started as a “hackathon” (2 days prep, 1 day evaluation)
- Last iteration was ran remotely over two months (2 weeks evaluation)
- We build D-Cube, our own open, low-cost testbed infrastructure
 - Currently two instances exist, Uppsala (Sweden) and Graz (Austria)
D-Cube’s hardware
Benchmarking Requirements

- Automated, seamless and repeatable execution
 - Without modifications to the firmware
- Configurable parameters
 - Traffic pattern: point-to-point, point-to-multipoint,…
 - Traffic load: periodic, irregular, number of msg/s,…
 - System parameters: network density,…
 - Experiment parameters: number of runs, duration,…
 - Environmental parameters: RF interference, temperature,…
- Configurable metrics
 - Latency, jitter, total/peek energy consumption, reliability,…
D-Cube: Architecture

D-Cube

- User Interface
 - Grafana
- Time Series Database
 - InfluxDB

Observer Module 1
Observer Module 2
... Observer Module n

Target Node 1
Target Node 2
... Target Node n

Underlying Testbed Infrastructure (Power + Reprogramming)

Observer Module

Processing Unit
- Raspberry Pi 2 Model B
- GPIO Tracing Unit
- Latency Profiling Unit
- Power Profiling Unit
- Navspark-GL
- Edge Detector
- Opto-Coupler

Opto-Couplers

GPIO

RESET

Voltage & Current
Still far-away from a benchmarking infrastructure

- Application Specification locks traffic pattern to point-to-point
- Traffic load created by a second TelosB
- JamLab integration for interference
- Manual Execution via SSH
- Static Topology
D-Cube: Architecture (first Update)
Does this work for benchmarking now?

- Management Web interface
 - Enables remote execution
 - Enables queuing of experiments
- Nodes can be turned off to simulate sparse network
D-Cube: Architecture (second Update)
Benchmarking Infrastructure

- Multiple traffic pattern in parallel
 - Available on every target node
- Traffic load fully in software now
- ReST API for automation
- Grouping and statistics available for performance metrics
The Problem

- Traffic pattern and node identities intertwined with the specification
 - Can not be changed without access to the source or the developer
 - Node identities are fixed, which may include optimisations based on topology
 - Prevents execution on other testbeds
Our proposed Solution

- Split the traffic pattern and node identities from the specification
 - Define a well-known data structure containing these information
 - Developer provides their memory address
 - Values are replaced according to the parameters
 - Includes the option for user-defined variables
User-defined Variables

- Build a custom firmware from the public source
- Replaced only the user-defined variable \texttt{crystal_sink_id}
- Automatically evaluated the resulting latency
EWSN Dependability Competition 2019?

- In 2018 we compared synchronous transmissions against synchronous transmissions (mostly glossy)
 - While fun, it looks like routing (RPL) based solutions do not care

- Binary events only
 - Would an (emulated) sensor or more complex scenario (e.g. payload and destination via UART) make a difference?

- Aging target node limits solutions
 - Newer hardware lacks/prohibits implementations?
Thank you for your attention!

Questions?