

Evaluating Bluetooth Low Energy for IoT

Jonathan Fürst*, Kaifei Chen†, Hyung-Sin Kim†, Philippe Bonnet* IT University of Copenhagen*, UC Berkeley†

CPSBench, Porto April 10, 2018 *jonf@itu.dk*

Why bother with BLE?

IoT applications rely on BLE for **local**, **energy- efficient** data exchange between **smartphones** and **resource constrained peripherals**.

iBeacon based localization

Smart wristbands/watches

Environmental sensors and actuators

- Most smartphones are equipped with BLE
- Great API support on Android and iOS.

 \rightarrow Sets BLE apart from other low power wireless technologies such as **ZigBee** or **Thread**.

Example: Smart Light Actuation Time

iBeacon based localization

Environmental sensors and actuators

→ Key Requirement: **Small latency of advertisements.**

Example: Smart Light Actuation Time

BLE Advertisement Latency. Advertising interval is set to 1280 ms while smartphones scan in the default balanced mode. Smartphones are placed in 2 m distance. We perform 20 repetitions.

Outline

- 1. Introduction
- 2. BLE Hardware and Software Abstractions
- 3. Opening the Black Box
- 4. Conclusion and Open Questions

BLE Hardware and Software Abstractions

Tracing BLE down the **Software** and **Hardware** Abstractions.

Smartphone OS (Android)

Hardware Implementation

Hypotheses

Hypothesis (1): BLE is accessed 'indirectly', through several (partly hidden) abstraction layers and proprietary drivers, which leads to unpredictable BLE behavior across smartphone models with different OS versions.

Tracing BLE down the **Software** and **Hardware** Abstractions.

Smartphone OS (Android)

Hardware Implementation

Hypotheses

Hypothesis (1): BLE is accessed 'indirectly', through several (partly hidden) abstraction layers and proprietary drivers, which leads to unpredictable BLE behavior across smartphone models with different OS versions.

Hypothesis (2): SoC and BLE chip implementations are two major factors that lead to different BLE performance.

Hypothesis (3): Hardware components, such as amplifier, antenna, and cover, impact BLE performance.

Opening the Black Box

BLEva Overview

Experimental Setup

BLE Chip	Phone Models and API Versions
WCN3620	Motorola Moto G (API 22), Moto E2 (API 23)
WCN3660	LG Nexus 4 (API 22), Asus Nexus 7 (2013) (API 23)
BCM4339	LG Nexus 5 (API 23), LG G3 (API 21)
BCM4356	Motorola Nexus 6 (API 24), HTC One M9 (API 23)
QCA6174	LG Nexus 5X (API 25)
BCM4330	Samsung Galaxy S3 (API 19)

- 10 different Android models from 2013 to 2016.
- Factory state before experimentation.
- Dedicated WiFi network for communication.

Impact of OS Implementations

Advertisement Packet Reception Ratio (PRR) for the Same Smartphone on Various OS Versions

→ **OS versions** (and BLE driver implementations) significantly **impact BLE performance**.

Impact of OS/SoC Implementations

Advertisement PRR of Phone Models:

→ SoC significantly impacts PRR. Phones with the same SoC exhibit similar performance, except for LG G3 because of highly customized OS.

Impact of OS/SoC Implementations

Advertisement Latency of Phone Models:

→ Advertising latency varies with both SoC vendor and SoC model of a same vendor.

Impact of OS/SoC/Hardware

Distance vs. Mean RSSI of Phone Models:

→ The impact of the smartphone model nullifies the impact of distance on RSSI in many cases.

Conclusion and Open Questions

Conclusion

Hypothesis (1): BLE is accessed 'indirectly', through several (partly hidden) abstraction layers and proprietary drivers, which leads to unpredictable BLE behavior across smartphone models with different OS versions.

Hypothesis (2): SoC and BLE chip implementations are two major factors that lead to different BLE performance.

Hypothesis (3): Hardware components, such as amplifier, antenna, and cover, impact BLE performance.

→ Experiments support the two first hypotheses.

Open Questions

- What should be the API abstraction level on Android/iOS?
- Impact on design and implementation of embedded BLE systems?
- What does it take for applications to become "BLE- conscious"?

BLEva Repository: https://github.com/jf87/BLEva

Thank you!

Additional Slides

Impact of OS/SoC Implementations

Write Latency of Phone Models:

→ Write latency is SoC-bound, but varies significantly across SoCs.

Impact of OS/SoC/Hardware

Mean RSSI value at each of four measurement times

Impact of OS/SoC/Hardware

Every **RSSI** sample value during the **whole experiment period**.