Evaluating Low-Power Wireless Cyber-Phyiscal Systems

D. Baumann1, F. Mager2, H. Singh1, M. Zimmerling2, S. Trimpe1

1Intelligent Control Systems Group
Max Planck Institute for Intelligent Systems Stuttgart/Tübingen

2Networked Embedded Systems Group
TU Dresden

April 10, 2018 / 1st Workshop on Benchmarking Cyber-Physical Networks and Systems
Motivation

Autonomous Driving

Factory Automation

[U.S. Department of Transportation]

[KUKA Robter GmbH]
Motivation

Autonomous Driving

Factory Automation

[U.S. Department of Transportation]

[KUKA Robter GmbH]

- Wireless CPS facilitate monitoring and control at unprecedented flexibility and low cost
Motivation

Autonomous Driving

Factory Automation

[Image 98x136 to 209x197]
[Image 237x136 to 318x197]

- Wireless CPS facilitate monitoring and control at unprecedented flexibility and low cost
- Will have to meet same high dependability requirements as wired CPS
Wireless CPS facilitate monitoring and control at unprecedented flexibility and low cost
Will have to meet same high dependability requirements as wired CPS
Especially due to mission- or even safety-critical applications
Wireless CPS facilitate monitoring and control at unprecedented flexibility and low cost
Will have to meet same high dependability requirements as wired CPS
Especially due to mission- or even safety-critical applications
Need for a standard approach for end-to-end evaluation of the whole wireless CPS, including communication, control, and embedded computing
Model and Challenges of Wireless CPS

Physical systems with sensors (S) and actuators (A)

- Sensor measurements sent to controller
- Computed control input sent back to system
- e.g., for stabilization, set-point tracking, . . .

Challenges
- Classical control: communication assumed perfect
- Wireless CPS: Have to consider delays, packet losses, . . .
- More challenging for systems with fast dynamics and unstable systems
Model and Challenges of Wireless CPS

- Physical systems with sensors (S) and actuators (A)
- Sensor measurements sent to controller

Challenges

- Classical control: communication assumed perfect
- Wireless CPS: Have to consider delays, packet losses, ...
- More challenging for systems with fast dynamics and unstable systems
Model and Challenges of Wireless CPS

- Physical systems with sensors (S) and actuators (A)
- Sensor measurements sent to controller
- Computed control input sent back to system

Challenges

- Classical control: communication assumed perfect
- Wireless CPS: Have to consider delays, packet losses, ...
- More challenging for systems with fast dynamics and unstable systems
Model and Challenges of Wireless CPS

- Physical systems with sensors (S) and actuators (A)
- Sensor measurements sent to controller
- Computed control input sent back to system
- e.g., for stabilization, set-point tracking, ...
Model and Challenges of Wireless CPS

- Physical systems with sensors (S) and actuators (A)
- Sensor measurements sent to controller
- Computed control input sent back to system
- e.g., for stabilization, set-point tracking, …

Challenges

- Classical control: communication assumed perfect
- Wireless CPS: Have to consider delays, packet losses, …
- More challenging for systems with fast dynamics and unstable systems
Model and Challenges of Wireless CPS

- Physical systems with sensors (S) and actuators (A)
- Sensor measurements sent to controller
- Computed control input sent back to system
- e.g., for stabilization, set-point tracking, . . .

Challenges

- Classical control: communication assumed perfect
Model and Challenges of Wireless CPS

- Physical systems with sensors (S) and actuators (A)
- Sensor measurements sent to controller
- Computed control input sent back to system
- e.g., for stabilization, set-point tracking, . . .

Challenges

- Classical control: communication assumed perfect
- Wireless CPS: Have to consider delays, packet losses, . . .
Model and Challenges of Wireless CPS

- Physical systems with sensors (S) and actuators (A)
- Sensor measurements sent to controller
- Computed control input sent back to system
- *e.g.*, for stabilization, set-point tracking, . . .

Challenges

- Classical control: communication assumed perfect
- Wireless CPS: Have to consider delays, packet losses, . . .
- More challenging for systems with fast dynamics and unstable systems
Characteristics of Low-Power Wireless Network

- Wireless network consists of distributed embedded devices with low-power wireless radio transceivers.
Characteristics of Low-Power Wireless Network

- Wireless network consists of distributed embedded devices with low-power wireless radio transceivers.
- Minimum communication delay for single packet across a few hops is a few ms.
- For multiple packets (e.g., sensor data), delay increases (medium contention, time-division multiplexing, . . .).
- Minimum end-to-end delay then is a few tens of ms.
Characteristics of Low-Power Wireless Network

- Wireless network consists of distributed embedded devices with low-power wireless radio transceivers
- Minimum communication delay for single packet across a few hops is a few ms
- For multiple packets (e.g., sensor data) delay increases (medium contention, time-division multiplexing, ...)
Characteristics of Low-Power Wireless Network

- Wireless network consists of distributed embedded devices with low-power wireless radio transceivers
- Minimum communication delay for single packet across a few hops is a few ms
- For multiple packets (e.g., sensor data) delay increases (medium contention, time-division multiplexing, ...)
- Minimum end-to-end delay then is a few tens of ms
Requirements for an Evaluation Approach

- Suitable physical System
 - Well-known system
 - Dynamics should match timescale of control, computing, and network elements
 - Realistic and versatile
 - Variety of realistic control tasks and communication requirements
 - Push state of the art low-power wireless networking and embedded computing to its limits
 - Promote adoption and reproducibility
 - Affordable in terms of cost and efforts required to adopt it
 - Reproduce experiments
 - Agnostic to control and network
 - Should be applicable to different system solutions
Requirements for an Evaluation Approach

- Suitable physical System
 - Well-known system
Requirements for an Evaluation Approach

- Suitable physical System
 - Well-known system
 - Dynamics should match timescale of control, computing, and network elements
Requirements for an Evaluation Approach

- Suitable physical System
 - Well-known system
 - Dynamics should match timescale of control, computing, and network elements
- Realistic and versatile
Requirements for an Evaluation Approach

- Suitable physical System
 - Well-known system
 - Dynamics should match timescale of control, computing, and network elements
- Realistic and versatile
 - Variety of realistic control tasks and communication requirements
Requirements for an Evaluation Approach

- Suitable physical System
 - Well-known system
 - Dynamics should match timescale of control, computing, and network elements
- Realistic and versatile
 - Variety of realistic control tasks and communication requirements
 - Push state of the art low-power wireless networking and embedded computing to its limits
Requirements for an Evaluation Approach

- Suitable physical System
 - Well-known system
 - Dynamics should match timescale of control, computing, and network elements

- Realistic and versatile
 - Variety of realistic control tasks and communication requirements
 - Push state of the art low-power wireless networking and embedded computing to its limits

- Promote adoption and reproducibility
Requirements for an Evaluation Approach

- **Suitable physical System**
 - Well-known system
 - Dynamics should match timescale of control, computing, and network elements

- **Realistic and versatile**
 - Variety of realistic control tasks and communication requirements
 - Push state of the art low-power wireless networking and embedded computing to its limits

- **Promote adoption and reproducibility**
 - Affordable in terms of cost and efforts required to adopt it
Requirements for an Evaluation Approach

- Suitable physical System
 - Well-known system
 - Dynamics should match timescale of control, computing, and network elements

- Realistic and versatile
 - Variety of realistic control tasks and communication requirements
 - Push state of the art low-power wireless networking and embedded computing to its limits

- Promote adoption and reproducibility
 - Affordable in terms of cost and efforts required to adopt it
 - Reproduce experiments
Requirements for an Evaluation Approach

- Suitable physical System
 - Well-known system
 - Dynamics should match timescale of control, computing, and network elements
- Realistic and versatile
 - Variety of realistic control tasks and communication requirements
 - Push state of the art low-power wireless networking and embedded computing to its limits
- Promote adoption and reproducibility
 - Affordable in terms of cost and efforts required to adopt it
 - Reproduce experiments
- Agnostic to control and network
Requirements for an Evaluation Approach

- Suitable physical System
 - Well-known system
 - Dynamics should match timescale of control, computing, and network elements
- Realistic and versatile
 - Variety of realistic control tasks and communication requirements
 - Push state of the art low-power wireless networking and embedded computing to its limits
- Promote adoption and reproducibility
 - Affordable in terms of cost and efforts required to adopt it
 - Reproduce experiments
- Agnostic to control and network
 - Should be applicable to different system solutions
Physical System: Cart-pole System

- Cart can move horizontally and like that influence angle of attached pendulum
Physical System: Cart-pole System

- Cart can move horizontally and like that influence angle of attached pendulum
- Stable ($\theta = 180^\circ$) and unstable ($\theta = 0^\circ$) equilibrium
Physical System: Cart-pole System

- Cart can move horizontally and influence the angle of the attached pendulum.
- Stable ($\theta = 180^\circ$) and unstable ($\theta = 0^\circ$) equilibrium.
- Fast dynamics (time constants at the order of tens of ms).
Physical System: Cart-pole System

- Cart can move horizontally and like that influence angle of attached pendulum
- Stable ($\theta = 180^\circ$) and unstable ($\theta = 0^\circ$) equilibrium
- Fast dynamics (time constants at the order of tens of ms)
- Well understood and studied system
Physical System: Cart-pole System

- Cart can move horizontally and like that influence angle of attached pendulum
- Stable ($\theta = 180^\circ$) and unstable ($\theta = 0^\circ$) equilibrium
- Fast dynamics (time constants at the order of tens of ms)
- Well understood and studied system
- Manageable regarding size, affordability, and portability
Requirements for an Evaluation Approach

- Suitable physical System
 - Well-known system
 - Dynamics should match timescale of control, computing, and network elements
- Realistic and versatile
 - Variety of realistic control tasks and communication requirements
 - Push state of the art low-power wireless networking and embedded computing to its limits
- Promote adoption and reproducibility
 - Affordable in terms of cost and efforts required to adopt it
 - Reproduce experiments
- Agnostic to control and network
 - Should be applicable to different system solutions
Control Tasks: Stabilization

▶ Goal: Keep angle close to $\theta = 0^\circ$
Control Tasks: Stabilization

- Goal: Keep angle close to $\theta = 0^\circ$
- Remote controller some hops away
Control Tasks: Stabilization

- Goal: Keep angle close to $\theta = 0^\circ$
- Remote controller some hops away
- Can vary number of control loops or have one controller for multiple systems

Wireless Multi-Hop Network

Controller
Control Tasks: Stabilization

- Goal: Keep angle close to $\theta = 0^\circ$
- Remote controller some hops away
- Can vary number of control loops or have one controller for multiple systems
- Test scalability of network and embedded computing
Control Tasks: Stabilization

Goal: Keep angle close to $\theta = 0^\circ$
Remote controller some hops away
Can vary number of control loops or have one controller for multiple systems
Test scalability of network and embedded computing
Application example: Factory automation
Control Tasks: Multi-agent Synchronization

- Goal: Synchronize whole or part of the state

\[e_{ij} = s_i - s_j \]

\[\lim_{t \to \infty} e_{ij} = 0 \quad \forall \ i, j \]

Increasing number of systems increases difficulty on control and networking side.

Central or local controller

Application examples: Platooning, formation control for drones
Control Tasks: Multi-agent Synchronization

- Goal: Synchronize whole or part of the state
- e.g., position: Define $e_{ij} = s_i - s_j$ and design controller such that $\lim_{t \to \infty} e_{ij} = 0 \forall i, j$
Control Tasks: Multi-agent Synchronization

- Goal: Synchronize whole or part of the state
- e.g., position: Define $e_{ij} = s_i - s_j$ and design controller such that $\lim_{t \to \infty} e_{ij} = 0 \forall i, j$
- Increasing number of systems increases difficulty on control and networking side
Control Tasks: Multi-agent Synchronization

- Goal: Synchronize whole or part of the state
- e.g., position: Define $e_{ij} = s_i - s_j$ and design controller such that $\lim_{t \to \infty} e_{ij} = 0 \forall i, j$
- Increasing number of systems increases difficulty on control and networking side
- Central or local controller
Control Tasks: Multi-agent Synchronization

- Goal: Synchronize whole or part of the state
- *e.g.*, position: Define $e_{ij} = s_i - s_j$ and design controller such that $\lim_{t \to \infty} e_{ij} = 0 \forall i, j$
- Increasing number of systems increases difficulty on control and networking side
- Central or local controller
- Application examples: Platooning, formation control for drones
Control Tasks: Synchronization and Stabilization

- Goal: Synchronize whole or part of the state while stabilizing the system
Control Tasks: Synchronization and Stabilization

- Goal: Synchronize whole or part of the state while stabilizing the system
- Most challenging problem
Requirements for an Evaluation Approach

- Suitable physical System
 - Well-known system
 - Dynamics should match timescale of control, computing, and network elements
- Realistic and versatile
 - Variety of realistic control tasks and communication requirements
 - Push state of the art low-power wireless networking and embedded computing to its limits
- Promote adoption and reproducibility
 - Affordable in terms of cost and efforts required to adopt it
 - Reproduce experiments
- Agnostic to control and network
 - Should be applicable to different system solutions
Adding Simulated Pendulums

- Real systems can be combined with or replaced by simulations
Adding Simulated Pendulums

- Real systems can be combined with or replaced by simulations
- Increases development speed
Adding Simulated Pendulums

- Real systems can be combined with or replaced by simulations
- Increases development speed
- Simplifies testing of scalability and repeatability

Wireless Network
Requirements for an Evaluation Approach

- Suitable physical System
 - Well-known system
 - Dynamics should match timescale of control, computing, and network elements

- Realistic and versatile
 - Variety of realistic control tasks and communication requirements
 - Push state of the art low-power wireless networking and embedded computing to its limits

- Promote adoption and reproducibility
 - Affordable in terms of cost and efforts required to adopt it
 - Reproduce experiments

- Agnostic to control and network
 - Should be applicable to different system solutions
Proposed Metrics for Evaluating Control and Networking

- Wireless CPS can be evaluated using different metrics

Primary metrics:
- End-to-end performance
- Quality of control (e.g., quadratic error between desired and actual state)
- Energy consumption

Secondary metrics:
- Evaluate individual parts of the system
- Classical network metrics (e.g., packet drop rate, latency, . . .)
- Control side: Packet drop tolerance, robustness to disturbances, . . .
Proposed Metrics for Evaluating Control and Networking

- Wireless CPS can be evaluated using different metrics
- Primary metrics:
 - End-to-end performance
 - Quality of control (e.g., quadratic error between desired and actual state)
 - Energy consumption
- Compare different CPS implementations of the same scenario
- Secondary metrics
 - Evaluate individual parts of the system
 - Classical network metrics (e.g., packet drop rate, latency, ...)
 - Control side: Packet drop tolerance, robustness to disturbances, ...
Proposed Metrics for Evaluating Control and Networking

- Wireless CPS can be evaluated using different metrics
- Primary metrics:
 - End-to-end performance
- Secondary metrics
 - Evaluate individual parts of the system
 - Classical network metrics (e.g., packet drop rate, latency, ...)
 - Control side: Packet drop tolerance, robustness to disturbances, ...
Proposed Metrics for Evaluating Control and Networking

- Wireless CPS can be evaluated using different metrics
- Primary metrics:
 - End-to-end performance
 - Quality of control (e.g., quadratic error between desired and actual state)
Proposed Metrics for Evaluating Control and Networking

- Wireless CPS can be evaluated using different metrics
- Primary metrics:
 - End-to-end performance
 - Quality of control (e.g., quadratic error between desired and actual state)
 - Energy consumption
Proposed Metrics for Evaluating Control and Networking

- Wireless CPS can be evaluated using different metrics
- Primary metrics:
 - End-to-end performance
 - Quality of control (e.g., quadratic error between desired and actual state)
 - Energy consumption
 - Compare different CPS implementations of the same scenario
Proposed Metrics for Evaluating Control and Networking

- Wireless CPS can be evaluated using different metrics
- Primary metrics:
 - End-to-end performance
 - Quality of control (e.g., quadratic error between desired and actual state)
 - Energy consumption
 - Compare different CPS implementations of the same scenario
- Secondary metrics
Proposed Metrics for Evaluating Control and Networking

- Wireless CPS can be evaluated using different metrics
- Primary metrics:
 - End-to-end performance
 - Quality of control (e.g., quadratic error between desired and actual state)
 - Energy consumption
 - Compare different CPS implementations of the same scenario
- Secondary metrics
 - Evaluate individual parts of the system
Proposed Metrics for Evaluating Control and Networking

- Wireless CPS can be evaluated using different metrics
 - Primary metrics:
 - End-to-end performance
 - Quality of control \((\text{e.g., quadratic error between desired and actual state})\)
 - Energy consumption
 - Compare different CPS implementations of the same scenario
 - Secondary metrics
 - Evaluate individual parts of the system
 - Classical network metrics \((\text{e.g., packet drop rate, latency, . . .})\)
Proposed Metrics for Evaluating Control and Networking

- Wireless CPS can be evaluated using different metrics

 - Primary metrics:
 - End-to-end performance
 - Quality of control (e.g., quadratic error between desired and actual state)
 - Energy consumption
 - Compare different CPS implementations of the same scenario

 - Secondary metrics
 - Evaluate individual parts of the system
 - Classical network metrics (e.g., packet drop rate, latency, . . .)
 - Control side: Packet drop tolerance, robustness to disturbances, . . .
Requirements for an Evaluation Approach

- Suitable physical System
 - Well-known system
 - Dynamics should match timescale of control, computing, and network elements
- Realistic and versatile
 - Variety of realistic control tasks and communication requirements
 - Push state of the art low-power wireless networking and embedded computing to its limits
- Promote adoption and reproducibility
 - Affordable in terms of cost and efforts required to adopt it
 - Reproduce experiments
- Agnostic to control and network
 - Should be applicable to different system solutions
Current Research: Reliable Feedback Control over Multiple Hops
Multi-Hop Stabilization of two Cart-poles

- Reliable stabilization of two pendulums
Multi-Hop Stabilization of two Cart-poles

- Reliable stabilization of two pendulums
- Angle and input inside safe regime
Multi-Hop Synchronization of three Cart-poles

- Different frequency for real pendulums without synchronization, simulated pendulum perfectly stable
Multi-Hop Synchronization of three Cart-poles

- Different frequency for real pendulums without synchronization, simulated pendulum perfectly stable
- Oscillate with similar frequency in synchronization experiment
Multi-Hop Synchronization of three Cart-poles

- Different frequency for real pendulums without synchronization, simulated pendulum perfectly stable
- Oscillate with similar frequency in synchronization experiment
- If one pendulum is fixed, the others react and try to synchronize
Conclusions

- Proposed an end-to-end evaluation approach for wireless CPS based on low-power networking technology that meets stated requirements
Conclusions

- Proposed an end-to-end evaluation approach for wireless CPS based on low-power networking technology that meets stated requirements
- We evaluate the CPS as a whole
Conclusions

- Proposed an end-to-end evaluation approach for wireless CPS based on low-power networking technology that meets stated requirements
- We evaluate the CPS as a whole
- Cart-pole as experimental platform
Conclusions

- Proposed an end-to-end evaluation approach for wireless CPS based on low-power networking technology that meets stated requirements
- We evaluate the CPS as a whole
- Cart-pole as experimental platform
- Allows for different scenarios that evaluate different capabilities
Conclusions

- Proposed an end-to-end evaluation approach for wireless CPS based on low-power networking technology that meets stated requirements
- We evaluate the CPS as a whole
- Cart-pole as experimental platform
- Allows for different scenarios that evaluate different capabilities
- Facilitate adoption and integration through simulated pendulums
References

Questions

▶ Is the cart-pole a good system for benchmarking?
▶ Are experimental results from a laboratory environment interesting for industry?
▶ Are these the relevant metrics? Are there other?
▶ What is missing to a real benchmark?