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Motivation

Autonomous Driving

[U.S. Department of Transportation]

Factory Automation

[KUKA Robter GmbH]

I Wireless CPS facilitate monitoring and control at unprecedented flexibility and low cost

I Will have to meet same high dependability requirements as wired CPS

I Especially due to mission- or even safety-critical applications

⇒ Need for a standard approach for end-to-end evaluation of the whole wireless CPS,
including communication, control, and embedded computing
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Model and Challenges of Wireless CPS

Controller 1 Controller 2

Wireless Network

Physical
System 2
A S

Physical
System 1
A S

Physical
System 3
A S

I Physical systems with sensors (S)
and actuators (A)

I Sensor measurements sent to
controller

I Computed control input sent back to
system

I e.g., for stabilization, set-point
tracking, . . .

Challenges

I Classical control: communication assumed perfect

I Wireless CPS: Have to consider delays, packet losses, . . .

I More challenging for systems with fast dynamics and unstable systems
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Characteristics of Low-Power Wireless Network

I Wireless network consists of
distributed embedded devices with
low-power wireless radio
transceivers

I Minimum communication delay for
single packet across a few hops is a
few ms

I For multiple packets (e.g., sensor
data) delay increases (medium
contention, time-division
multiplexing, . . . )

I Minimum end-to-end delay then is a
few tens of ms
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Requirements for an Evaluation Approach

I Suitable physical System

I Well-known system
I Dynamics should match timescale of control, computing, and network elements

I Realistic and versatile

I Variety of realistic control tasks and communication requirements
I Push state of the art low-power wireless networking and embedded computing to its limits

I Promote adoption and reproducibility

I Affordable in terms of cost and efforts required to adopt it
I Reproduce experiments

I Agnostic to control and network

I Should be applicable to different system solutions
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Physical System: Cart-pole System

θ

s

I Cart can move horizontally and like that influence angle of attached pendulum

I Stable (θ =180°) and unstable (θ =0°) equilibrium

I Fast dynamics (time constants at the order of tens of ms)

I Well understood and studied system

I Manageable regarding size, affordability, and portability
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Control Tasks: Stabilization

Wireless Multi-Hop Network

Controller

I Goal: Keep angle close to θ =0°

I Remote controller some hops away

I Can vary number of control loops or have one controller for multiple systems

I Test scalability of network and embedded computing

I Application example: Factory automation
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Control Tasks: Multi-agent Synchronization

I Goal: Synchronize whole or part of the state

I e.g., position: Define eij = si − sj and design controller such that limt→∞ eij =0∀i, j
I Increasing number of systems increases difficulty on control and networking side

I Central or local controller

I Application examples: Platooning, formation control for drones
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Control Tasks: Synchronization and Stabilization

I Goal: Synchronize whole or part of the state while stabilizing the system

I Most challenging problem
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Requirements for an Evaluation Approach

I Suitable physical System
I Well-known system
I Dynamics should match timescale of control, computing, and network elements

I Realistic and versatile
I Variety of realistic control tasks and communication requirements
I Push state of the art low-power wireless networking and embedded computing to its limits

I Promote adoption and reproducibility
I Affordable in terms of cost and efforts required to adopt it
I Reproduce experiments

I Agnostic to control and network
I Should be applicable to different system solutions
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Adding Simulated Pendulums

Wireless Network

I Real systems can be combined with or replaced by simulations

I Increases development speed

I Simplifies testing of scalability and repeatability
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Proposed Metrics for Evaluating Control and Networking

I Wireless CPS can be evaluated using different metrics

I Primary metrics:

I End-to-end performance
I Quality of control (e.g., quadratic error between desired and actual state)
I Energy consumption
I Compare different CPS implementations of the same scenario

I Secondary metrics

I Evaluate individual parts of the system
I Classical network metrics (e.g., packet drop rate, latency, . . . )
I Control side: Packet drop tolerance, robustness to disturbances, . . .
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Requirements for an Evaluation Approach

I Suitable physical System
I Well-known system
I Dynamics should match timescale of control, computing, and network elements

I Realistic and versatile
I Variety of realistic control tasks and communication requirements
I Push state of the art low-power wireless networking and embedded computing to its limits

I Promote adoption and reproducibility
I Affordable in terms of cost and efforts required to adopt it
I Reproduce experiments

I Agnostic to control and network
I Should be applicable to different system solutions
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Current Research: Reliable Feedback Control over Multiple Hops
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Multi-Hop Stabilization of two Cart-poles
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I Reliable stabilization of two pendulums

I Angle and input inside safe regime
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Multi-Hop Synchronization of three Cart-poles
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I Different frequency for real pendulums without synchronization, simulated pendulum
perfectly stable

I Oscillate with similar frequency in synchronization experiment

I If one pendulum is fixed, the others react and try to synchronize
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perfectly stable

I Oscillate with similar frequency in synchronization experiment

I If one pendulum is fixed, the others react and try to synchronize
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Questions

I Is the cart-pole a good system for benchmarking?

I Are experimental results from a laboratory environment interesting for industry?

I Are these the relevant metrics? Are there other?

I What is missing to a real benchmark?
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