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[U.S. Department of Transportation]

» Wireless CPS facilitate monitoring and control at unprecedented flexibility and low cost
» Will have to meet same high dependability requirements as wired CPS
» Especially due to mission- or even safety-critical applications

=- Need for a standard approach for end-to-end evaluation of the whole wireless CPS,
including communication, control, and embedded computing
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Challenges

» Physical systems with sensors (S)
and actuators (A)

» Sensor measurements sent to
controller

» Computed control input sent back to
system

> e.g., for stabilization, set-point
tracking, ...

» Classical control: communication assumed perfect

» Wireless CPS: Have to consider delays, packet losses, ...

» More challenging for systems with fast dynamics and unstable systems
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Characteristics of Low-Power Wireless Network

Wireless network consists of
distributed embedded devices with
low-power wireless radio
transceivers

Minimum communication delay for
single packet across a few hops is a
few ms

For multiple packets (e.g., sensor
data) delay increases (medium
contention, time-division
multiplexing, . ..)

Minimum end-to-end delay then is a
few tens of ms
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Requirements for an Evaluation Approach

v

Suitable physical System

» Well-known system
» Dynamics should match timescale of control, computing, and network elements

Realistic and versatile

» Variety of realistic control tasks and communication requirements
» Push state of the art low-power wireless networking and embedded computing to its limits

Promote adoption and reproducibility

> Affordable in terms of cost and efforts required to adopt it
> Reproduce experiments

Agnostic to control and network
» Should be applicable to different system solutions

v

v

v
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v

Cart can move horizontally and like that influence angle of attached pendulum
Stable (6 =180°) and unstable (6 =0°) equilibrium
Fast dynamics (time constants at the order of tens of ms)

v

v

v

Well understood and studied system

v

Manageable regarding size, affordability, and portability
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Wireless Multi-Hop Network

v

Goal: Keep angle close to 8 =0°

v

Remote controller some hops away

v

Can vary number of control loops or have one controller for multiple systems

v

Test scalability of network and embedded computing

v

Application example: Factory automation
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Control Tasks: Multi-agent Synchronization

v

Goal: Synchronize whole or part of the state

v

e.g., position: Define e;= s; — s; and design controller such that lim; ... j=0Vi,j

v

Increasing number of systems increases difficulty on control and networking side

v

Central or local controller

v

Application examples: Platooning, formation control for drones
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Control Tasks: Synchronization and Stabilization
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Control Tasks: Synchronization and Stabilization
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» Goal: Synchronize whole or part of the state while stabilizing the system
» Most challenging problem
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Adding Simulated Pendulums

Wireless Network

» Real systems can be combined with or replaced by simulations
» Increases development speed
» Simplifies testing of scalability and repeatability
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Proposed Metrics for Evaluating Control and Networking

» Wireless CPS can be evaluated using different metrics
» Primary metrics:

» End-to-end performance

» Quality of control (e.g., quadratic error between desired and actual state)
» Energy consumption

» Compare different CPS implementations of the same scenario

» Secondary metrics

» Evaluate individual parts of the system
» Classical network metrics (e.g., packet drop rate, latency, .. .)
» Control side: Packet drop tolerance, robustness to disturbances, ...
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Current Research: Reliable Feedback Control over Multiple Hops

L: = i hi @ Wireless Node

— T T
L)

[n] .|@ Controller Node

f Sim. Pendul
- O [ Sim. Pendulum
=@ Real Pendulum
O 0 4 T
=8l

16/21



Multi-Hop Stabilization of two Cart-poles
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» Reliable stabilization of two pendulums
» Angle and input inside safe regime
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Multi-Hop Synchronization of three Cart-poles
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Multi-Hop Synchronization of three Cart-poles
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» Different frequency for real pendulums without synchronization, simulated pendulum
perfectly stable

» Oscillate with similar frequency in synchronization experiment

» |f one pendulum is fixed, the others react and try to synchronize
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Conclusions

v

Proposed an end-to-end evaluation approach for wireless CPS based on low-power
networking technology that meets stated requirements

v

We evaluate the CPS as a whole

v

Cart-pole as experimental platform
Allows for different scenarios that evaluate different capabilities

v

v

Facilitate adoption and integration through simulated pendulums
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Questions

v

Is the cart-pole a good system for benchmarking?

v

Are experimental results from a laboratory environment interesting for industry?

Are these the relevant metrics? Are there other?

v

v

What is missing to a real benchmark?
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