Evaluating Low-Power Wireless Cyber-Phyiscal Systems

D. Baumann¹, F. Mager², H. Singh ¹, M. Zimmerling², S. Trimpe¹

¹ Intelligent Control Systems Group
Max Planck Institute for Intelligent Systems Stuttgart/Tübingen

²Networked Embedded Systems Group TU Dresden

April 10, 2018 / 1st Workshop on Benchmarking Cyber-Physical Networks and Systems

Autonomous Driving

[U.S. Department of Transportation]

[KUKA Robter GmbH]

Autonomous Driving

[U.S. Department of Transportation]

Factory Automation

[KUKA Robter GmbH]

▶ Wireless CPS facilitate monitoring and control at unprecedented flexibility and low cost

Autonomous Driving

[U.S. Department of Transportation]

[KUKA Robter GmbH]

- Wireless CPS facilitate monitoring and control at unprecedented flexibility and low cost
- Will have to meet same high dependability requirements as wired CPS

Autonomous Driving

[U.S. Department of Transportation]

[KUKA Robter GmbH]

- Wireless CPS facilitate monitoring and control at unprecedented flexibility and low cost
- Will have to meet same high dependability requirements as wired CPS
- Especially due to mission- or even safety-critical applications

Autonomous Driving

[U.S. Department of Transportation]

[KUKA Robter GmbH]

- Wireless CPS facilitate monitoring and control at unprecedented flexibility and low cost
- Will have to meet same high dependability requirements as wired CPS
- Especially due to mission- or even safety-critical applications
- ⇒ Need for a standard approach for end-to-end evaluation of the whole wireless CPS, including communication, control, and embedded computing

Physical systems with sensors (S) and actuators (A)

- Physical systems with sensors (S) and actuators (A)
- Sensor measurements sent to controller

- Physical systems with sensors (S) and actuators (A)
- Sensor measurements sent to controller
- Computed control input sent back to system

- Physical systems with sensors (S) and actuators (A)
- Sensor measurements sent to controller
- Computed control input sent back to system
- e.g., for stabilization, set-point tracking, . . .

- Physical systems with sensors (S) and actuators (A)
- Sensor measurements sent to controller
- Computed control input sent back to system
- e.g., for stabilization, set-point tracking, . . .

- Physical systems with sensors (S) and actuators (A)
- Sensor measurements sent to controller
- Computed control input sent back to system
- *e.g.*, for stabilization, set-point tracking, . . .

Challenges

Classical control: communication assumed perfect

- Physical systems with sensors (S) and actuators (A)
- Sensor measurements sent to controller
- Computed control input sent back to system
- *e.g.*, for stabilization, set-point tracking, . . .

Challenges

- Classical control: communication assumed perfect
- Wireless CPS: Have to consider delays, packet losses, . . .

- Physical systems with sensors (S) and actuators (A)
- Sensor measurements sent to controller
- Computed control input sent back to system
- *e.g.*, for stabilization, set-point tracking, . . .

Challenges

- Classical control: communication assumed perfect
- Wireless CPS: Have to consider delays, packet losses, . . .
- More challenging for systems with fast dynamics and unstable systems

 Wireless network consists of distributed embedded devices with low-power wireless radio transceivers

- Wireless network consists of distributed embedded devices with low-power wireless radio transceivers
- Minimum communication delay for single packet across a few hops is a few ms

- Wireless network consists of distributed embedded devices with low-power wireless radio transceivers
- Minimum communication delay for single packet across a few hops is a few ms
- For multiple packets (e.g., sensor data) delay increases (medium contention, time-division multiplexing, ...)

- Wireless network consists of distributed embedded devices with low-power wireless radio transceivers
- Minimum communication delay for single packet across a few hops is a few ms
- For multiple packets (e.g., sensor data) delay increases (medium contention, time-division multiplexing, ...)
- Minimum end-to-end delay then is a few tens of ms

- Suitable physical System
 - Well-known system

- Suitable physical System
 - Well-known system
 - Dynamics should match timescale of control, computing, and network elements

- Suitable physical System
 - Well-known system
 - Dynamics should match timescale of control, computing, and network elements
- Realistic and versatile

- Suitable physical System
 - Well-known system
 - Dynamics should match timescale of control, computing, and network elements
- Realistic and versatile
 - Variety of realistic control tasks and communication requirements

- Suitable physical System
 - Well-known system
 - Dynamics should match timescale of control, computing, and network elements
- Realistic and versatile
 - Variety of realistic control tasks and communication requirements
 - Push state of the art low-power wireless networking and embedded computing to its limits

- Suitable physical System
 - Well-known system
 - Dynamics should match timescale of control, computing, and network elements
- Realistic and versatile
 - Variety of realistic control tasks and communication requirements
 - Push state of the art low-power wireless networking and embedded computing to its limits
- Promote adoption and reproducibility

- Suitable physical System
 - Well-known system
 - Dynamics should match timescale of control, computing, and network elements
- Realistic and versatile
 - Variety of realistic control tasks and communication requirements
 - Push state of the art low-power wireless networking and embedded computing to its limits
- Promote adoption and reproducibility
 - Affordable in terms of cost and efforts required to adopt it

- Suitable physical System
 - Well-known system
 - Dynamics should match timescale of control, computing, and network elements
- Realistic and versatile
 - Variety of realistic control tasks and communication requirements
 - Push state of the art low-power wireless networking and embedded computing to its limits
- Promote adoption and reproducibility
 - Affordable in terms of cost and efforts required to adopt it
 - Reproduce experiments

- Suitable physical System
 - Well-known system
 - Dynamics should match timescale of control, computing, and network elements
- Realistic and versatile
 - Variety of realistic control tasks and communication requirements
 - Push state of the art low-power wireless networking and embedded computing to its limits
- Promote adoption and reproducibility
 - Affordable in terms of cost and efforts required to adopt it
 - Reproduce experiments
- Agnostic to control and network

- Suitable physical System
 - Well-known system
 - Dynamics should match timescale of control, computing, and network elements
- Realistic and versatile
 - Variety of realistic control tasks and communication requirements
 - Push state of the art low-power wireless networking and embedded computing to its limits
- Promote adoption and reproducibility
 - Affordable in terms of cost and efforts required to adopt it
 - Reproduce experiments
- Agnostic to control and network
 - Should be applicable to different system solutions

► Cart can move horizontally and like that influence angle of attached pendulum

- Cart can move horizontally and like that influence angle of attached pendulum
- ▶ Stable (θ = 180°) and unstable (θ = 0°) equilibrium

- Cart can move horizontally and like that influence angle of attached pendulum
- ▶ Stable (θ = 180°) and unstable (θ = 0°) equilibrium
- ► Fast dynamics (time constants at the order of tens of ms)

- Cart can move horizontally and like that influence angle of attached pendulum
- ▶ Stable ($\theta = 180^{\circ}$) and unstable ($\theta = 0^{\circ}$) equilibrium
- Fast dynamics (time constants at the order of tens of ms)
- Well understood and studied system

- Cart can move horizontally and like that influence angle of attached pendulum
- ▶ Stable ($\theta = 180^{\circ}$) and unstable ($\theta = 0^{\circ}$) equilibrium
- Fast dynamics (time constants at the order of tens of ms)
- Well understood and studied system
- Manageable regarding size, affordability, and portability

- Suitable physical System
 - Well-known system
 - Dynamics should match timescale of control, computing, and network elements
- Realistic and versatile
 - Variety of realistic control tasks and communication requirements
 - Push state of the art low-power wireless networking and embedded computing to its limits
- Promote adoption and reproducibility
 - Affordable in terms of cost and efforts required to adopt it
 - Reproduce experiments
- Agnostic to control and network
 - Should be applicable to different system solutions

Control Tasks: Stabilization

▶ Goal: Keep angle close to θ = 0°

- ▶ Goal: Keep angle close to $\theta = 0^{\circ}$
- Remote controller some hops away

- ▶ Goal: Keep angle close to $\theta = 0^{\circ}$
- Remote controller some hops away
- Can vary number of control loops or have one controller for multiple systems

- ▶ Goal: Keep angle close to $\theta = 0^{\circ}$
- Remote controller some hops away
- Can vary number of control loops or have one controller for multiple systems
- Test scalability of network and embedded computing

- ▶ Goal: Keep angle close to $\theta = 0^{\circ}$
- Remote controller some hops away
- Can vary number of control loops or have one controller for multiple systems
- Test scalability of network and embedded computing
- Application example: Factory automation

► Goal: Synchronize whole or part of the state

- Goal: Synchronize whole or part of the state
- ightharpoonup *e.g.*, position: Define $e_{ij}=s_i-s_j$ and design controller such that $\lim_{t\to\infty}e_{ij}=0\ \forall i,j$

- Goal: Synchronize whole or part of the state
- ▶ e.g., position: Define $e_{ij} = s_i s_j$ and design controller such that $\lim_{t\to\infty} e_{ij} = 0 \, \forall i,j$
- Increasing number of systems increases difficulty on control and networking side

- Goal: Synchronize whole or part of the state
- ▶ *e.g.*, position: Define $e_{ij} = s_i s_j$ and design controller such that $\lim_{t\to\infty} e_{ij} = 0 \,\forall i,j$
- Increasing number of systems increases difficulty on control and networking side
- Central or local controller

- Goal: Synchronize whole or part of the state
- ▶ *e.g.*, position: Define $e_{ij} = s_i s_j$ and design controller such that $\lim_{t\to\infty} e_{ij} = 0 \,\forall i,j$
- ▶ Increasing number of systems increases difficulty on control and networking side
- Central or local controller
- Application examples: Platooning, formation control for drones

Control Tasks: Synchronization and Stabilization

► Goal: Synchronize whole or part of the state while stabilizing the system

Control Tasks: Synchronization and Stabilization

- ► Goal: Synchronize whole or part of the state while stabilizing the system
- Most challenging problem

Requirements for an Evaluation Approach

- Suitable physical System
 - Well-known system
 - Dynamics should match timescale of control, computing, and network elements
- Realistic and versatile
 - Variety of realistic control tasks and communication requirements
 - Push state of the art low-power wireless networking and embedded computing to its limits
- Promote adoption and reproducibility
 - Affordable in terms of cost and efforts required to adopt it
 - Reproduce experiments
- Agnostic to control and network
 - Should be applicable to different system solutions

Adding Simulated Pendulums

Real systems can be combined with or replaced by simulations

Adding Simulated Pendulums

- Real systems can be combined with or replaced by simulations
- ► Increases development speed

Adding Simulated Pendulums

- Real systems can be combined with or replaced by simulations
- Increases development speed
- Simplifies testing of scalability and repeatability

Requirements for an Evaluation Approach

- Suitable physical System
 - ► Well-known system
 - Dynamics should match timescale of control, computing, and network elements
- Realistic and versatile
 - Variety of realistic control tasks and communication requirements
 - Push state of the art low-power wireless networking and embedded computing to its limits
- Promote adoption and reproducibility
 - Affordable in terms of cost and efforts required to adopt it
 - Reproduce experiments
- Agnostic to control and network
 - Should be applicable to different system solutions

▶ Wireless CPS can be evaluated using different metrics

- ▶ Wireless CPS can be evaluated using different metrics
- Primary metrics:

- ▶ Wireless CPS can be evaluated using different metrics
- Primary metrics:
 - ► End-to-end performance

- Wireless CPS can be evaluated using different metrics
- Primary metrics:
 - End-to-end performance
 - Quality of control (e.g., quadratic error between desired and actual state)

- Wireless CPS can be evaluated using different metrics
- Primary metrics:
 - End-to-end performance
 - Quality of control (e.g., quadratic error between desired and actual state)
 - Energy consumption

- Wireless CPS can be evaluated using different metrics
- Primary metrics:
 - End-to-end performance
 - Quality of control (e.g., quadratic error between desired and actual state)
 - Energy consumption
 - Compare different CPS implementations of the same scenario

- Wireless CPS can be evaluated using different metrics
- Primary metrics:
 - End-to-end performance
 - Quality of control (e.g., quadratic error between desired and actual state)
 - Energy consumption
 - Compare different CPS implementations of the same scenario
- Secondary metrics

- Wireless CPS can be evaluated using different metrics
- Primary metrics:
 - End-to-end performance
 - Quality of control (e.g., quadratic error between desired and actual state)
 - Energy consumption
 - Compare different CPS implementations of the same scenario
- Secondary metrics
 - Evaluate individual parts of the system

- Wireless CPS can be evaluated using different metrics
- Primary metrics:
 - End-to-end performance
 - Quality of control (e.g., quadratic error between desired and actual state)
 - Energy consumption
 - Compare different CPS implementations of the same scenario
- Secondary metrics
 - Evaluate individual parts of the system
 - ► Classical network metrics (e.g., packet drop rate, latency, ...)

- Wireless CPS can be evaluated using different metrics
- Primary metrics:
 - End-to-end performance
 - Quality of control (e.g., quadratic error between desired and actual state)
 - Energy consumption
 - Compare different CPS implementations of the same scenario
- Secondary metrics
 - Evaluate individual parts of the system
 - Classical network metrics (e.g., packet drop rate, latency, . . .)
 - Control side: Packet drop tolerance, robustness to disturbances, . . .

Requirements for an Evaluation Approach

- Suitable physical System
 - Well-known system
 - Dynamics should match timescale of control, computing, and network elements
- Realistic and versatile
 - Variety of realistic control tasks and communication requirements
 - Push state of the art low-power wireless networking and embedded computing to its limits
- Promote adoption and reproducibility
 - Affordable in terms of cost and efforts required to adopt it
 - Reproduce experiments
- Agnostic to control and network
 - ► Should be applicable to different *system* solutions

Current Research: Reliable Feedback Control over Multiple Hops

Multi-Hop Stabilization of two Cart-poles

Reliable stabilization of two pendulums

Multi-Hop Stabilization of two Cart-poles

- Reliable stabilization of two pendulums
- ► Angle and input inside safe regime

Multi-Hop Synchronization of three Cart-poles

▶ Different frequency for real pendulums without synchronization, simulated pendulum perfectly stable

Multi-Hop Synchronization of three Cart-poles

- ▶ Different frequency for real pendulums without synchronization, simulated pendulum perfectly stable
- Oscillate with similar frequency in synchronization experiment

Multi-Hop Synchronization of three Cart-poles

- Different frequency for real pendulums without synchronization, simulated pendulum perfectly stable
- Oscillate with similar frequency in synchronization experiment
- If one pendulum is fixed, the others react and try to synchronize

Proposed an end-to-end evaluation approach for wireless CPS based on low-power networking technology that meets stated requirements

- Proposed an end-to-end evaluation approach for wireless CPS based on low-power networking technology that meets stated requirements
- ▶ We evaluate the CPS as a whole

- Proposed an end-to-end evaluation approach for wireless CPS based on low-power networking technology that meets stated requirements
- We evaluate the CPS as a whole
- Cart-pole as experimental platform

- Proposed an end-to-end evaluation approach for wireless CPS based on low-power networking technology that meets stated requirements
- We evaluate the CPS as a whole
- Cart-pole as experimental platform
- Allows for different scenarios that evaluate different capabilities

- Proposed an end-to-end evaluation approach for wireless CPS based on low-power networking technology that meets stated requirements
- We evaluate the CPS as a whole
- Cart-pole as experimental platform
- Allows for different scenarios that evaluate different capabilities
- ► Facilitate adoption and integration through simulated pendulums

References

- ▶ D. Baumann, F. Mager, H. Singh, M. Zimmerling, and S. Trimpe. "Evaluating Low-Power Wireless Cyber-Physical Systems". In: Proceedings of the 1st Workshop on Benchmarking Cyber-Physical Networks and Systems (CPSBench 2018). 2018. URL: https://arxiv.org/abs/1804.09582
- ► F. Mager, D. Baumann, R. Jacob, L. Thiele, S. Trimpe, and M. Zimmerling. Feedback Control Goes Wireless: Guaranteed Stability over Low-power Multi-hop Networks.

 Under submission, arXiv preprint: https://arxiv.org/abs/1804.08986.
 2018
- ► F. Ferrari, M. Zimmerling, L. Thiele, and O. Saukh. "Efficient network flooding and time synchronization with glossy". In: *Proceedings of the 10th IEEE International Conference on Information Processing in Sensor Networks (IPSN)*. 2011, pp. 73–84

Questions

- Is the cart-pole a good system for benchmarking?
- Are experimental results from a laboratory environment interesting for industry?
- ▶ Are these the relevant metrics? Are there other?
- ▶ What is missing to a real benchmark?